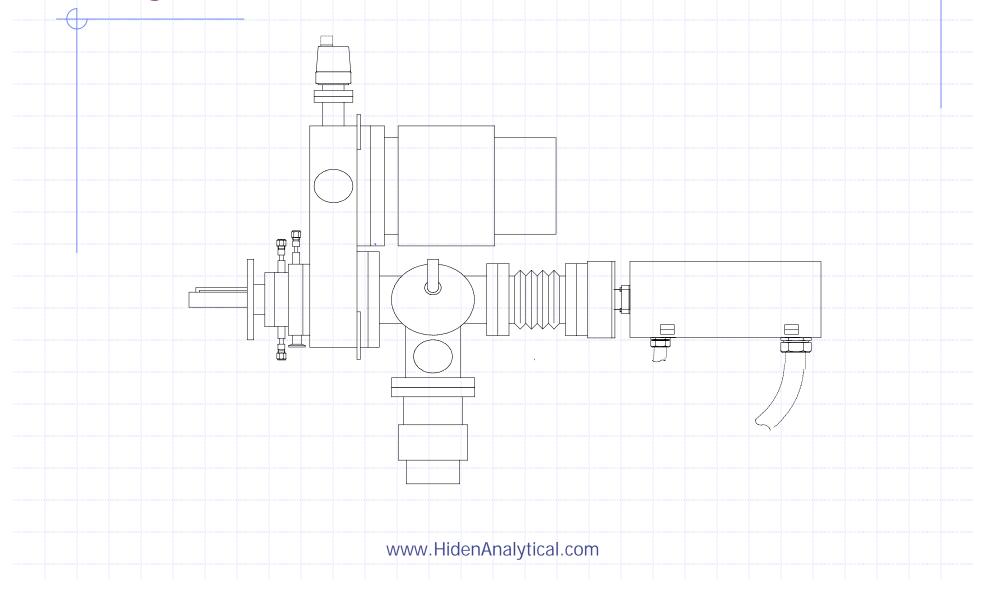

HPR-60 Molecular Beam Sampling Mass Spectrometer

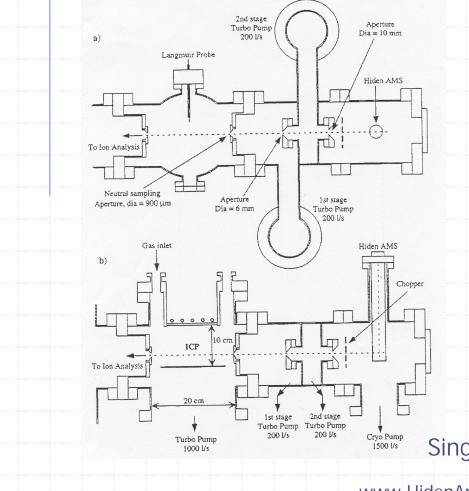
- Reaction Kinetics
- Catalysis
- TPD/TPR/TPO
- TA-MS
- Gas Purity
- Environmental Gas Analysis
- Combustion
- CVD/MOCVD



HPR-60 detail

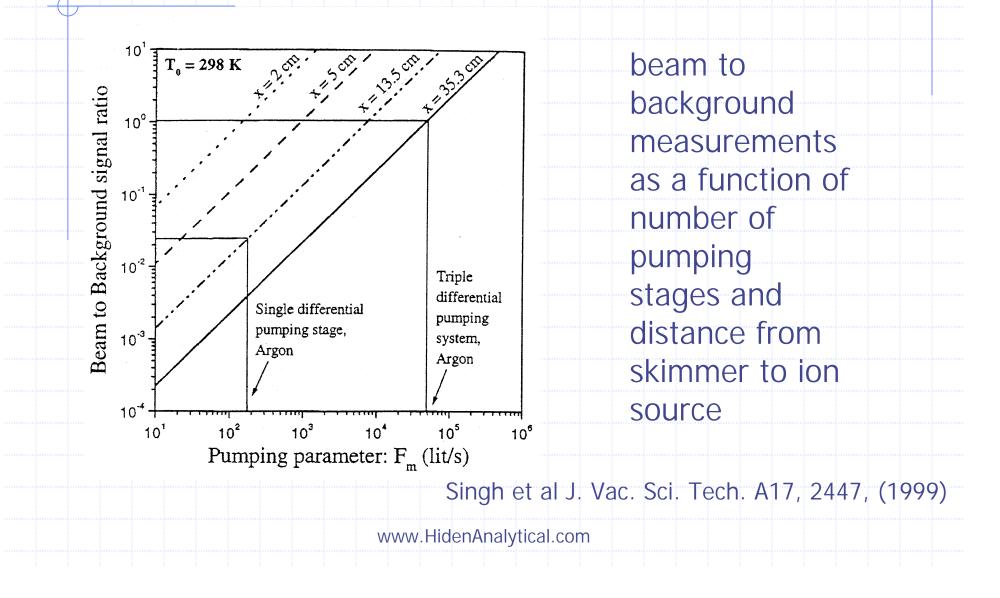


alignment bellows detail


application – carbon arc evaporation

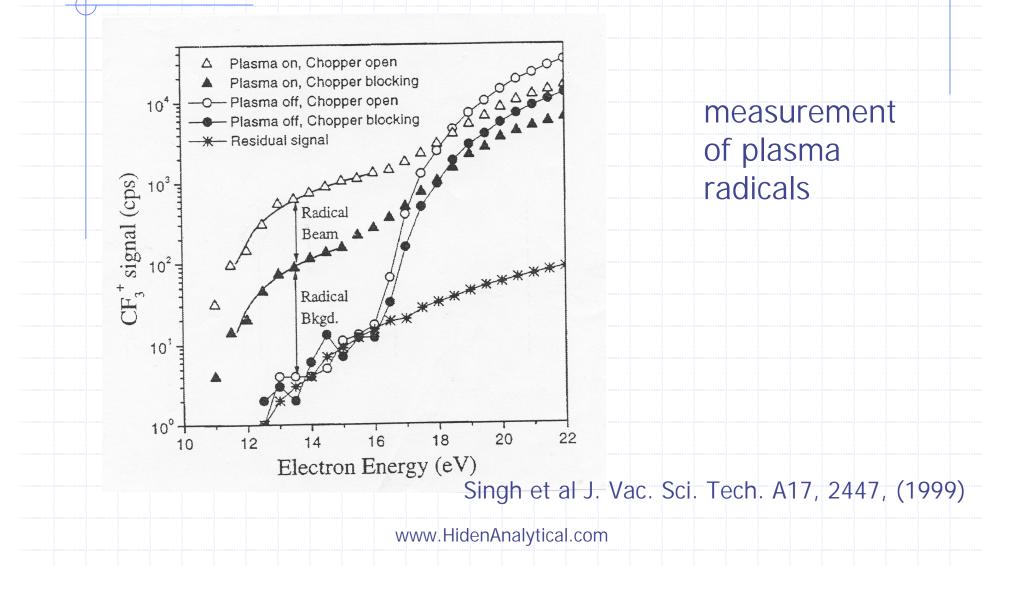
mass spectrum from 300 - 1000 amu of Fullerene C60 produced from high pressure arc evaporation. The zoomed series of C60 peaks are identified as incorporating unto n=9 of the 13C isotope.

application – plasma sampling

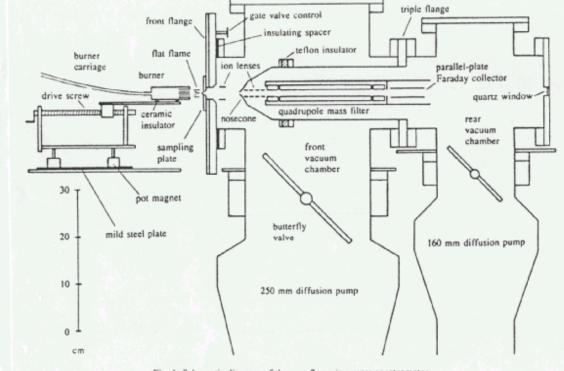


schematic of plasma reactor and 3 stage differentially pumped line of sight mass spectrometer with cross beam ion source

Singh et al J. Vac. Sci. Tech. A17, 2447, (1999)



application – plasma sampling



application – plasma sampling

application – combustion studies

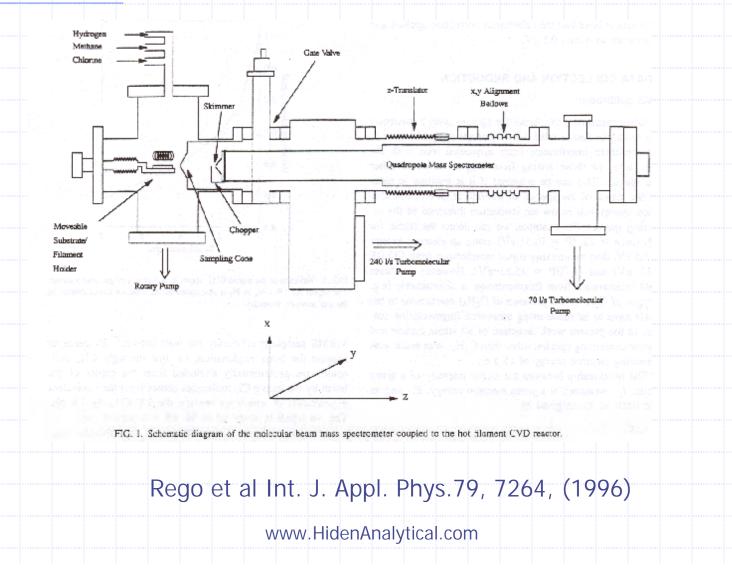
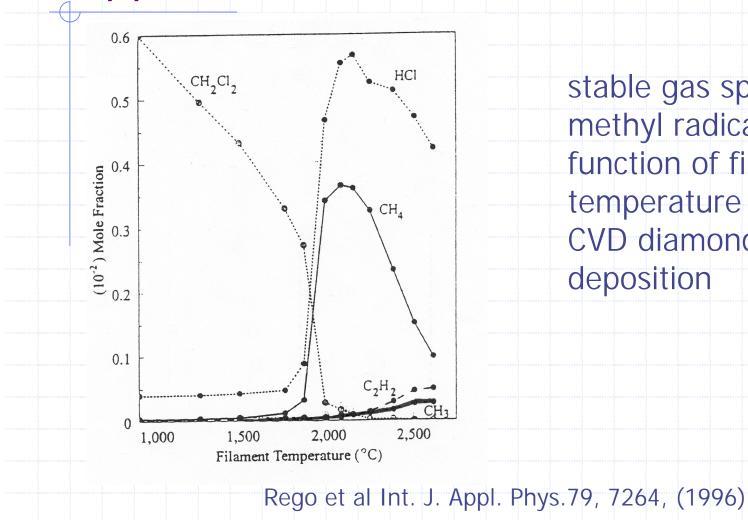

flame ionisation mass spectrometer

Fig. 1. Schematic diagram of the new flame-ion mass spectrometer.

Goodings et al Int. J. Mass Spec. & Ion Proc. 132, 83, (1994)



application – CVD diamond

application – CVD diamond

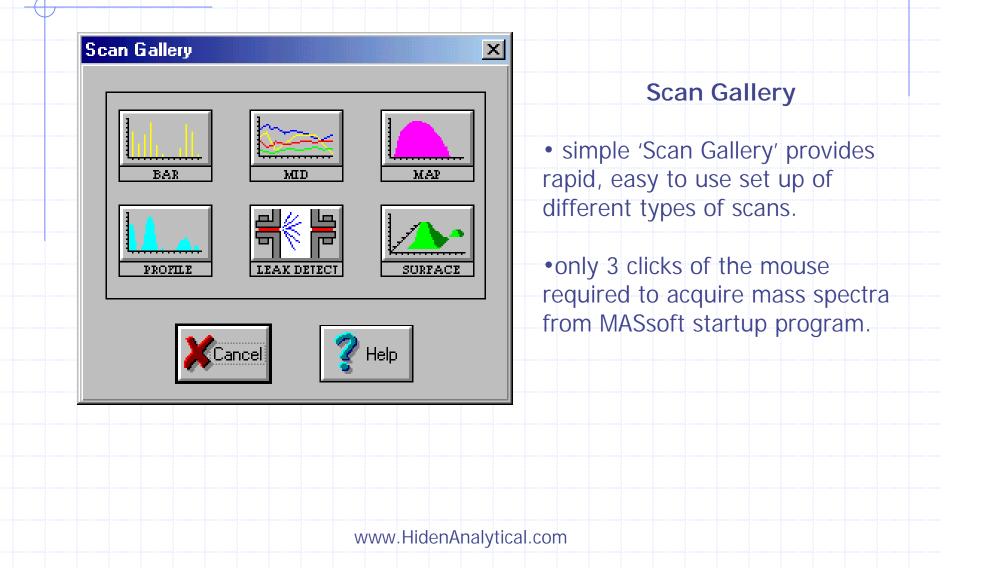
stable gas species and methyl radicals as a function of filament temperature during **CVD** diamond deposition

mass spectrometer options

A

Detection Scheme	Analogue	Pulse Ion Counting	Pulse Ion Counting	Pulse Ion Counting
Measured	Neutrals Radicals	Neutrals Radicals	Neutrals Radicals + Ions - Ions retarding field energy analysis	Neutrals Radicals + Ions - Ions IED's
nass rang	jes to 2500	amu		

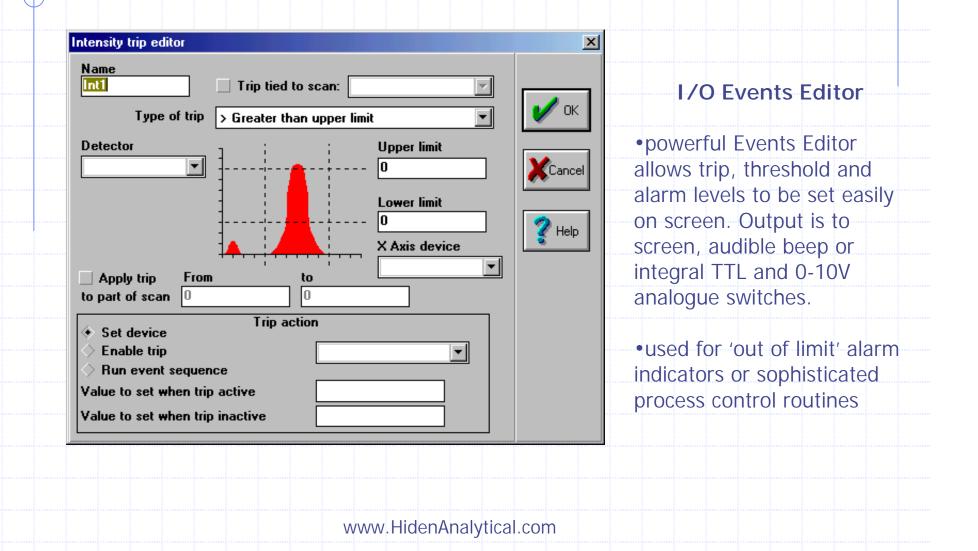
ppb detection levels


	'aramet	ters	/Scans:	ppm Hydrog	jen 1	ppm Air 1	ppm Water 1	ppm Methane 1	ppm Oxygen 1	ppm CO2 1	
ď	` Real	tiп	1e								
	7:57:	32	pm		31	3	4	0.7	0.4	0.7	1
	7:58:				32		3			0.6	
	7:59:				33		3	0.7	0.5	1	
	8:01:				34		3	0.5			
	8:02:				37	4	3	0.5			
	8:03:				36	2	4	0.5	0.08	0.8	
	8:04:				32	3	3	0.9		0.9	
	8:06:				35		3	0.4			
	8:07:				34		3	0.7	0.4	0.5	
	8:08:				35	1	5	0.8		0.7	
	8:09:				37	2	3	0.6	0.3	0.7	
	8:11:				33 34		2	0.7	0.2	0.8	
	8:12: 8:13:				34	3	3	0.7	0.2	1 0.6	
	8:15:				32	2	2	0.0		0.8	
	8:16:				32	2	4	0.5	0.1	0.0	
	8:17:				33	3	4	0.6	0.2	0.5	
	8:18:				36		3	0.8			
	8:20:				31	3	J J	0.8	0.3	0.7	
	8:21:				32	2	3	0.8		0.8	
	8:22:				35	3	۵ ۵	0.5	0.4	0.7	
	8:23:				33		4	0.8	0.3		
	8:25:				37		3	0.8			
	8:26:				33	2	4	0.7	0.2	0.7	
					31	2	4	0.5	0.3		
					33	2	4	0.4			
					37		2	0.5	0.2	0.9	
	8:31:				29	2	2				
	8:27: 8:28: 8:30: 8:31:	59 12	pm pm		33 37	3	2	0.4 0.5	0. 0.	3 2	3 0.8 2 0.9

compact HPR-60 MBMS

+

ID Mode Scans	aphical	Multiple Ion Detection Mode
	M Data	•Scan up to 100 different masses simultaneously.
Library RGA Freon 23 Helium Hexafluoroethane Hydrofluoric acid Hydrogen Chlorid Hydrogen Sulphid	e << Delete	•Choose masses from the internal library.
Component Detail Name Mass Mode	Hydrogen Rel. Sens. 0.44 Restore 2 Rel. SEM 1 Restore RGA Colour Blue	•View data as graphical views, tabular views or both at the same time.
Detector Acquisition Range		•Display output in preferred units (i.e. partial pressure, %, ppb)


B B E M M T	ppm Krypton 1	the second second second	Witness 1	nom CO2.1	
Mean	1.076				
Range	1,163				
Standard Deviation		0.5292		5.198	
Elapsed time	0.02940	9.0696	0.003131	9,130	
15:38.476	0,6164	4,432	1.204	307.114	
17:03	1.052	4.594			
17:27.496	0.6865	4,813		310.071	
17:52.050	0.9516	4.604			
18:16.600	0.7315	3.958			
18:41.100	1.01	4.71	1.197	308.99	
19:05.592	0.8715	3,928			
19:30.105	0.8821	4,438			
19:54.585	1.591	4.711	1.19		
20:19.086	0.9122	4.508		313.183	
20:43.655	0.5779	4,152	1.195	304.958	
21:08.190	1.236	3.671	1.195	305.331	
21:32.669	1.018	3.33	1.194	306.393	
21:57.204	1.155	4,349	1.19	311,249	
22:21.734	0.8833	4.433			
22:43.254	0.6761	3.94			
23:07.831	1.366	4.624			
23:32.350	1.227	3.534			
23:56.887	1.349	3.554		315.646	
24:21.424	1.266	3.835	1,212	311.106	
24:45.902	1.341	4.668			
25:10.401	1.386	5.443			
25:34.924	1.082	3,745			
25:59.425	0.991	4,298			
26:23.972	0.7894	4.201	1.207	388.836	
Open a scan file					

 results presented as a function of time in mixed units (ppm and %).
 the yellow markers indicate the range of data that has been selected for statistical analysis.
 Mean, Range and Standard Deviation from this analysis are shown at the top of the view

and updated in real time.

Tabular View

LabVIEW[™] drivers

 the Hiden drivers are automatically selfconfiguring, with all mass spectrometer control parameters grouped within LabVIEW[™] for convenient programming for the full application range.

why choose Hiden Analytical?

company profile

Hiden Analytical was founded in 1981 and is presently situated in a 23,000 sq. ft. manufacturing plant in Warrington, England with a staff of 65 persons. Hiden Analytical Inc, a whollyowned subsidiary of Hiden Analytical Ltd, was formed in New Hampshire on January 1st 1996 to establish a domestic USA sales/service centre.

Certificate No. 6738

why choose Hiden Analytical?

people

sales & service on 4 continents with ...

20 years manufacturing experience and...

why choose Hiden Analytical?

Installations the following sites use Hiden Gas Analysis Systems

USA	UK/Europe	Asia Pacific
Applied Materials	Bosch	Canon
Axelis	IMEC	Hitachi Fundamental Res.
CVC/Veeco	Motorola	Hyundai
DuPont	Nortel Networks	LG Electronics
General Motors	Oxford Plasma Technology	NEC
IBM Research	Philips	Samsung
Lawrence Livermore	Rolls Royce	Sony Corporation
Motorola	SGS Thomson	ТДК
NIST	Siemens	Tokyo Electron
Semetech	Surface Technology Systems	Toshiba
	www.HidenAnalytical.com	