In situ Characterization of Atomic Layer Deposition of Titanium Dioxide from Titanium Isopropoxide and Water

Antti Rahtu and Mikko Ritala
Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland
E-Mail: antti.ranta@helsinki.fi
Website: helsinki.fi/.../www

Introduction

- Titanium dioxide (TiO₂) thin films are possible candidates for microelectronic and optical applications.
- TiO(CH₂)₄ is an important ALD precursor, notably for TiO₂ [1] but also for SrTiO₃ [2].
- The oxygen source was deionized water. It was used instead of normal water to distinguish the reaction products and the background coming from the unreacted precursor.

Experimental

The key features of the QMS-ALD system are the following [3]:

- QMS in a steel chamber
- Sampling through a nozzle (20 - 200 µm)
- Pressure in reaction chamber is about 1 mbar and at QMS about 10⁻⁶ mbar

QMS: Hiden HAL-3F 501 RC, 1 = 510 amu, variable 0 - 150 eV ionization energy, dual Faraday/electron multiplier detector

The key features of the QCM-ALD system are the following [3]:

- The highest operation temperature is about 400 °C
- Fast reading frequency of 20 Hz

QCM: Mavor MTA-400, Mass Resolution: 0.375 ng/cm² at 6 MHz (0.01 Å TiO₂)

Results

Simultaneous QMS and QCM data:

![Graph showing simultaneous QMS and QCM data.](image)

Figure 1. A schematic side view of the reactor.

Figure 2. A photo of the back side of the reactor.

![Graph showing reaction mechanism.](image)

The reaction mechanisms can be evaluated from both QCM and QMS data.

For QCM data, the measured m₁ and m₂ values and the predicted reaction mechanism (Table 1) have relation:

\[
\frac{m_1}{m_2} = \frac{M(TiO_2)}{M(DL)}
\]

Table 1. Possible reaction mechanisms and the corresponding m₁/m₂ ratios.

<table>
<thead>
<tr>
<th>Reaction Mechanism</th>
<th>m₁/m₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
</tr>
</tbody>
</table>

From QMS data, the reaction mechanism can be evaluated by comparing the amounts of ligands released during the metal and water pulses.

Conclusions

- The exchange reactions increase up to 250 °C (Fig. 4).
- At 150 - 250 °C about half of the ligands are released during the titanium precursor pulse which refers to the reaction mechanism n = 2 (Table 1 and Fig. 6).
- The thermal decomposition of the titanium precursor starts at 250 °C (Figs. 4 and 5).

Acknowledgment

Financial support from the Academy of Finland and the National Technology agency (TEKES), Helsinki, Finland is gratefully acknowledged.

References