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Compared with conventional low-energy ion scattering
(LEIS), the MARISS technique:

e avoids interference between

scattered and sputtered ions; - Ne' - Al
10° E, = 3keV
o 8 =120° y =60°
e suppresses the background Elo
related to doubly (or multiply) & *°?
charged ions; £ 10}
1023
* provides a useful opportunity 10!
to operate with a “mixed” ENERGY, eV

primary-ion beam containing
different types of projectiles



General view

Hiden EQS 1000 Mass Energy Analyser
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lonbeamgroup Our MARISS-SIMS set-up measures both energy resolved
mass spectra and mass resolved energy distributions
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Extraction optics

Hiden EQS 1000 Mass Energy Analyser
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Experimental Conditions

EQS 1000 Mass Energy Analyser :
— energy resolution 4E,=3.5 eV (FWHM) at E,=80 eV,
— energy scan of #1100 eV;

— mass resolution m/4m =(5-10)m (FWHM) in the mass range 1-1000
m/z.

« 3Minert gas ion source:

— energy E,=0.05 -5 keV with 4E,=2-4 eV (l_,,=10-15 mA, U=70-80 V,
p=10-Torr, 99.99% pure Ne, without mass-separation);

— current 1,=10 - 1000 nA with d, <3 mm and angular divergence 4y
=0.01-0.05 rad.

 “In-plane” specular reflection geometry:
— scattering angle 8=120° with 46=1° (402 =10+ sr);
— incident angle ¢=60° (on the sample surface).

o Samples studied were pure (99.9 %), polished,
polycrystalline Cu, Ag, Au and Pt.
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Mass-resolved energy spectra of 2 Ne* scattered ions
(Eo=1keV, 8=120° ¢ = 60°)
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A close-up view of superposed scans for
20Ne* and %°Ne* scattered ions ...
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... How the scattered peak FWHM depends
on the primary-ion energy

PEAK WIDTH FWHM (eV)

50
: 20 Ne* + 22 Ne® . ¢
] 5
404
| o)
] 5
1 5 3
30- - - %
I
] 3 . w F
| Q % ’ W
. F A
20 . § & v ™ Cu
1 & ¥ o Ag
| v Au
1 1
500 1000 1500

PRIMARY ION ENERGY E_ (eV)




@IPEL!‘:

B vl iy £ L

The ion scattering signal S (the binary elastic collision
peak), due to the i -component in the surface of the sample,
can be written as:

S =IB' N & F R

» | is the primary-ion current;

« P,*istheion-survival probability;

» N, is the surface atom density;

e (g is the cross section per solid angle AQ ;

* F, is an experimental factor including the analyser transmission and
the detector efficiency;

» R is a correction factor for rough surfaces (R =1 for a flat surface);

* @ is a steric factor taking into account shielding by neighboring
atoms (0< a; <1).
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If consider that only the Auger process is dominant, the ion-
survival probability P*is

P™ =exp(-v,/v)

where 1/v =1/ ViRt 1/ V, with v, and v being the normal
components of velocities (Hagstrum) or total velocities (Godfrey-
Woodruff) of the ion on the incoming and outgoing (final) parts of the
trajectory respectively, and v, is the characteristic velocity
(neutralization constant) for the ion-target combination obtained by
integrating the Auger transition rate over the length of the projectile
trajectory.

The term 1/v represents the time that the particle spends near the
surface, with larger values of v, leading to a smaller ion fraction of
the scattered particles.
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Assuming that P* is a function of the reciprocal (inverse)
velocities, it has become a custom to plot the natural
logarithm of the normalized intensity InS versus 1/v by using
the following experimental approaches:

e variation of the scattering angle at fixed primary energy or
variation of the primary energy at a fixed scattering angle
(Brongersma et al.);

e angular distribution measurements of ions scattered into the
plane normal to that containing the incident beam and normal to
the surface of the target with a fixed primary energy and a movable
analyser (O’Connor, MacDonald et al.);

 Dual-Isotope Surface Compaosition technigue (Brongersma et al,
Surf.Sci. 227 (1990) 361) or multi-isotope investigation
(Wittmaack, Surf. Sci. 345 (1996) 110)
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Dual-Isotope Surface Composition (DISC) technique is based
on the use of the two (or more) isotopes of the primary ions as
projectiles

« For agiven incident energy E,, the lighter isotope ion has
the higher velocity before and after collision;

« The neutralization constant v, remains the same for all
isotopes;

 The apparatus factors and sample characteristics are
practically unaltered during dual-isotope scattering ion
measurements.

Our updated Dual-Isotope method involves the
simultaneous use of 2°Net*and 2°Ne* as projectiles
with additional mass-separation of scattered ions
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By using °Ne* and %°Ne* as primary ions, one can finds that

ZOS 1 1
223 D20| Déo ) Ve 22, - 20V)

where the upper index of all factors indicates the mass of Ne*
isotope ions. It is important to note that:

*N0 precise primary-ion current measurements are needed,
because the relative primary current (%21/%°1) is equal to the natural
neon isotopes ratio k = 0.102;

» the differential cross section is practically identical: for ZBL
potential (*?0/?°g) = 1.005-1.01 (E, = 0.5-1.5 keV and 8=120°).

205 1 1
: -V m22V_20V)




@mELp Plots of the natural logarithm of the peak intensity

— ratio versus the difference in reciprocal velocities
ml\lg + 2 Ne*
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P*=(b/v")exp(-v,/v)

where b is the normalization factor and the index
of the power 22

Projectile parameters estimated SN vV
for the “critical points” T 20),
Sample |EokeV oA V. x10*m/s 2V, X10°m/s n
20P+ 1
Cu 1.3 037 3.344 3.632 5.7 20 Ne* - to -Au
Ag 1.5 041 4.129 4.401 5.2 10*’\
Pt 21 043 5.323 5.627 3.1 1o?
Au’ 2.1 0.43 5.322 5.629 34 a
10 p"=exp (-1.90/v)
— P =v*exp (-1.90 /v)
10 T T T T
1,5 2,0 2,5 3,0 3,5 4,0

1/%°v (10°s/m)

lon-survival probability P*vs
the reciprocal velocity
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Conclusions

« An updated dual-isotope method based on MARISS technique
with two isotopes of Netas primary-ion beam was developed.

 The data for characteristic velocity v, for Cu,Ag, Au and Pt
were estimated.

« An empirical formula for P* (1/v), containing an additional term
dependent on the reciprocal velocity, was suggested without
monotone dependence of the ion-survival probability on the
reciprocal velocity.

e The proposed expression is open to question and call for an
adequate physical model based on ab-initio quantum
calculation.
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Hyperthermal energy Ne*scattering from Au

1007 *Ne*-to- Au
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Hyperthermal energy Ne*scattering from Pt
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Surface topography measured after experiments by
Tencor Profiler P-10 (a total ion dose was about 10'° cm-2)

Au sample (rms roughness is Pt sample (rms roughness is
about 210 = 130 nm) about 92 + 8.5 nm)
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SIMS-MARISS depth profiles of cobalt oxide film
(about 25 nm) on indium tin oxide (ITO) substrate

INTENSITY (cps)
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TIM E (min)

Primary ions - Ne*+He*, 1 keV / 1 pA, 2x2 mm?, 20% el. gating, 6 =120°.
Peaks of interest: SIMS -113In*, 5°Co*; MARISS - ?°Ne*-to-In (596 eV),
20Ne*-to-Co (352 eV), *He*-to-O (474 eV)
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“Significant items in a given
group normally constitute a
relatively small part of the total
items”

Vilfredo Pareto,
an Italian sociologist and economist



