What is TPO and Why is it Performed?

Temperature programmed oxidation (TPO) is an analytical technique capable of establishing the oxidation of an element or compound through thermal excitation, with various applications in the field of catalysis. The performance of TPO requires a furnace or microreactor capable of increasing temperatures of a catalyst in precise increments up to extreme conditions, for example in brackets of 1-20°C up to 1000°C. An integrated mass spectrometer allows for constant real-time analysis of catalytic activity throughout a given thermal reaction, in which a gas mixture will flow over a catalyst throughout an incrementally programmed temperature rise.

Hiden Analytical -TPO

TPO is typically used for oxidation of organic compounds using metal oxide catalysts. It can provide significant insights into various catalytic reactions with an array of applications. Chiefly it is used in research and development sectors such as the study of ecologically friendly alternative fuels and chemical manufacture.

For example, hydrogen (H) based fuel cells have emerged as a highly-efficient, low-pollutant energy source which is gradually being introduced in fuel cell electric vehicles (FCEVs) with a positive yet potentially superficial impact on greenhouse gas emissions. The problem with this exciting process is that the primary method of hydrogen production is natural gas reformation. Steam-hydro carbonation reforming reacts a natural hydrocarbon such as methane (CH4) with high pressure steam of up to 1,000°C in the presence of a catalyst. This produces hydrogen for use in various industries, including for implementation in greener energy sources. However, this process has very high energy demands, significantly reducing the environmental benefits of the end-product.

Researchers have been considering alternatives to natural gas reformation for years, including partial oxidation processes, while improvements to the existing manufacture of hydrogen include looking for ways to augment natural gas reformation processes with production from renewable energy sources. This research requires extensive consideration and analysis of catalytic materials, and TPO is uniquely suited to provide dynamic and accurate data in this field of research.

TPO Mass-Spectrometers from Hiden Analytical

Hiden Analytical has developed and manufactured a modular bench-top analytical system known as CATLAB-PCS, capable of performing TPO with seamless data acquisition from the in-bed thermocouple, allowing researchers to directly monitor catalyst temperature. It is designed to allow for automated and repeatable catalyst characterization studies using TPO principles.

hapr0118_catlabintegratedmicro-reactor_450px

The integrated microreactor CATLAB-PCS module system has already been prepared for the characterization of nickel-based catalysts for partial oxidation of methane. This exothermic reaction is proven to reduce the energy demands of natural gas reformation because it is a relatively exothermic reaction which occurs at an exorbitantly higher rate than high-pressure reformation. Using TPO, researchers hoped to determine the catalytic properties of the low-cost metal nickel (Ni) with methane, which is stable and active enough to partially oxidize with methane, although it exhibits a risk of sintering at high temperatures.

This is just one of the established areas of research of TPO-enabled products from Hiden Analytical, with potential for the further characterization and analysis of reaction mechanisms and oxidation of catalysts for a range of applications. If you would like to find out more about TPO, please contact us.