Hiden HPR-20 Gas Analysis System with Proteus Multi-way valve

Mass Spectrometry In Containment
Thermal-hydraulic Test Facilities
HPR-20 Gas Analysis System with Proteus 40-way valve
Introduction

The analysis of thermal-hydraulic processes that might occur in a nuclear water reactor containment building under severe accident conditions is very important. Hydrogen behaviour in the reactor containment is studied during a postulated severe accident. Hydrogen is of concern because, at some concentrations, deflagration can occur, resulting in damage to the containment and the release of radioactive material into the environment. (Helium is used to simulate Hydrogen)
Quadrupole Mass Spectrometers for Advanced Science

Fig. 1 Multipoint system for central analysis of gases from thermal-hydraulic test facilities
Quadrupole Mass Spectrometers for Advanced Science

- Multi-stream measurement system
- Specialised for helium/air/steam mixtures.
Quadrupole Mass Spectrometers for Advanced Science

0 to 1bar Bourdon tube gauge

Mass flow meter with Modbus communication and 65°C heating

Gas ballast valve
Quadrupole Mass Spectrometers for Advanced Science

- Hiden 3F Mass Spectrometer
- Hiden QIC Inlet
- Turbo molecular pump

[Image: Close-up of a mass spectrometer setup with the label '30.07.2015 16:36']
Proteus Valve Features and Benefits

- Gas Selector Valve – novel face sealing technology – to give effective sealing and long life
- Maximum operating temperature 120°C
- No minimum sample flow
- Zero crosstalk from other samples
- > 6 x10^6 operations before maintenance
- 20, 40 or 80 ports
- Direct drive, high torque micro-stepping motor with IP65 protected incremental rotary encoder providing z-home position and closed loop motor control.
- Full motion management including intelligent acceleration/ deceleration, position maintenance, bi-directional drive and position error annunciation
- Positional Accuracy +/- 0.09°
- Full brown-out sensing and operation
- Communication (valve port position select) via Binary, BCB and RS232C
- Also available as a separate product
Worked Example – Multi-stream Analysis

Test Setup:
- 2 x 5 m lines (1/16”OD x 0.05”ID) heated to 170°C.
- Line 1: Port 40 – 100% steam
- Line 2: Port 39 – 96% steam, 4% He

Test design:
- Measure response (s) switching between steam and steam/helium at 10 mln/min, (this is about 8.5 mln/min as read on the MFM and 1.5 mln/min through the capillary taken from the pressure vs flow table).
- Pressure 100 mbar, flow rate ~10 mln/min, sample time 400 ms (this is the time for a data cycle).
Response of water H_2O^+ signal switching port 40 to port 39

1.3 second response
Helium response

Typical data cycle including stream switching and measurement of helium, oxygen, nitrogen, water is 5 seconds.
Bourdon gauge Pressure with respect to Mass Flow

\[y = 2 \times 10^{-4} - 2 \times 10^{-7} x^3 + 0.0002 x^2 - 0.0035 x \]
QGA Professional Software for Quantitative Gas Analysis

An application specific software package for quantitative gas and vapour analysis providing real time continuous analysis of up to 32 species with concentrations measured in the range 0.1PPM to 100%.

- Automatic subtraction of spectral overlaps
- Automated calibration routines
- Mass spectral library with intelligent scan feature
- Multi-stream support
- Data export OPC and/or direct to Excel
Multiple stream sequence set-up – 40 stream example

Additional streams can be added or subtracted from the stream sequence at any time during the analysis with a simple click on the stream LED.
Multi stream gas analysis - The real time trend analysis of up to 4 selected streams can be viewed in real time and in review.
Quadrupole Mass Spectrometers for Advanced Science

- Graphical view with % on left axis and flow on the right axis

- Tabular data view
Data Export

- Data export to MS Excel.
- New workbook for each data file.
- Quantitative data, raw data values and corrected data values are exported.
- Calibration factors and background correction values are recorded.
- The workbook contains a worksheet for each gas stream.

Data for up to 80 gas sample streams
Paul Scherrer Institute – PANDA Test Facility Studies

PANDA during construction
Passive condensers are at the top of the large cylindrical vessels
Paul Scherrer Institute – PANDA Test Facility Studies

- Analysis of the composition and characteristics of vent streams from a Passive Decay Heat Removal safety system for Advanced Light Water Reactor Systems

- The development of Passive Protection Systems eliminates sources of failure present for active systems e.g. Human error or power failure

- The Hiden system was commissioned to investigate the function and reliability of passive condensers under severe accident conditions, in presence of "non-condensable" gases e.g. N$_2$, which can markedly affect the efficiency of the PPS
Hiden HPR-20 Gas Analysis System with Proteus Multi-way valve – Selected Customers
References

Alternative Configuration

Bench-top version of the instrument is also available
• www.HidenAnalytical.com

• The Hiden website is an excellent resource with product pages, brochures, catalogues, product pages with some application notes, presentation and other information.

• Contact +44 1925 445225 for direct support.