Hydrofluorocarbon ion density of argon- or krypton-diluted CH$_2$F$_2$ plasmas: generation of CH$_2$F$^+$ and CHF$_2^+$ by dissociative ionization in charge exchange collisions

Quadrupole mass-spectroscopic analysis – in rare gas (M) diluted CH$_2$F$_2$ plasma – has revealed selective formation of CH$_2$F$^+$ ion for Ar dilution and CHF$_2^+$ ion for Kr dilution. Ion densities of CH$_2$F$^+$ and CHF$_2^+$ were determined by dissociative ionization pathways in channels of charge exchange collisions, i.e., CH$_2$F$_2$ + M$^+$ → CH$_2$F$^+$ + F$^- +$ M and CHF$_2^+$ + H$^+$ + M$^+$ in CH$_2$F$_2$ plasmas. In Ar-diluted plasmas, CH$_2$F$^+$ ions predominated due to dissociative ionization between Ar$^+$ (ca. 15.8 eV) and C-F appearance energy (ca. 16 eV) to form CH$_2$F$^-$. In contrast, for Kr-diluted plasmas, C-H appearance energy (ca. 13.8 eV) predominated to produce a larger amount of CHF$_2^+$ ions due to a similar channel for charge exchange collisions between Kr$^+$ (ca. 14 eV) and CH$_2$F$_2$. In accordance with the analytic results, the addition of Ar and Kr gas to CH$_2$F$_2$ plasmas provided control over the fraction of CH$_2$F$^+$ and CHF$_2^+$ ion densities.

Hydrofluorocarbons have H atoms in place of F atoms in fluorocarbon gases. Dissociation reactions involving C–H and C–F bonds are of interest for controlling the density of reactive species: F atoms, produced by dissociation of the C–F bond, are a main etchant for Si, while H atoms, produced by dissociation of the C–H bond, promote the deposition of polymers on a substrate surface. For processing accuracy, a balance of species for etching and deposition is believed to be important and to be closely related the dissociation processes in gas-phase. However, the variety and densities of the ions and radicals generated in hydrofluorocarbon plasmas have not been fully elucidated.

The experiments was performed with a dual frequency capacitively coupled plasma (CCP) etching reactor, installed a quadrupole mass spectrometer (QMS; Hiden Analytical, EQP) at the chamber wall. A 100-μm diameter aperture was installed in the QMS entrance. A mixture of Ar or Kr gas with CH$_2$F$_2$ gas was introduced into a chamber, and plasmas were sustained by applying the very high frequency (VHF) power to the electrode.

Positive ion mass spectrometric measurements revealed that the dominant positive ions were CH$_2$F$^+$ and CHF$_2^+$. In the ionization pathway generated for CH$_2$F$^+$ and CHF$_2^+$ ions, two channels are involved: CH$_2$F$^+$ through C-F bond dissociation or through C-H bond dissociation. The reaction schemes for the dissociative reactions in electron collisions are given by CH$_2$F$_2$ + e$^-$ → CH$_2$F$^+$ + F + 2e$^-$ (threshold at 15.8 eV), and → CHF$_2^+$ + H + 2e$^-$ (13.8 eV). The counter fragments of charge-neutral H and F atoms were generated simultaneously through these dissociation mechanisms. A larger ion density for CH$_2$F$^+$ in the Ar-diluted plasma, other dissociation processes but the electron collisions need to be considered. Charge exchange collisions between rare gas ions and CH$_2$F$_2$ molecules occurred, because the appearance energies were located close to that for Ar (16 eV) and Kr (14 eV).

We concentrate our continuous study in elucidation of the dissociative reactions in plasma through the gas-phase diagnostics utilized the mass-spectrometric measurements.
Fig 1. Cross section for dissociative ionization for a CH$_2$F$_2$ molecule

Fig 2. Individual CH$_2$F$^+$ and CHF$_2^+$ ion fraction on total CH$_x$F$_y$ ion density at Kr- and Ar-diluted CH$_2$F$_2$ plasma

Project summary by:
Yusuke Kondo, Kenji Ishikawa, Toshiya Hayashi, and Masaru Hori, *et al.*, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, JAPAN

Paper Reference:

Hidden Product:
EQP Mass & Energy Analyser

Follow the link to the product catalogue on our website for further information