Time-Resolved Ionisation Studies of the High Power Impulse Magnetron Discharge in Mixed Argon and Nitrogen Atmosphere

A.P. Ehiasarian1, Y. Aranda Gonzalvo2 and T.D. Whitmore

1Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom
2Plasma & Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington, WA5 7UN, United Kingdom

Introduction

High power impulse magnetron sputtering (HIPIMS) is a new method for physical vapor deposition (PVD) based on magnetron sputtering [1, 2]. It utilises transient impulse (short pulse) grow discharges with very high power and current density (up to 3 kW/m² and 4 A/cm² respectively) at a duty cycle of ~5%. Under these conditions the plasma density near the target increases sufficiently to ionise a significant proportion of the sputtered metal ions [3,4] thus creating a high-efficiency metal ion source. The discharge has been up scaled successfully [4] and has found a number of applications. One example is substrate pretreatment under HIPIMS which benefits from double-free metal ion bombardment that provides a highly clean substrate interface where local optical growth is maintained [5]. This in turn enhances the coating adhesion. Another example are nitride [6] thin films grown by HIPIMS. C/N films grown by HIPIMS have a high density of the microstructure and demonstrate superior performance in corrosion and wear environments [6,7].

Experimental

Equipment:

• Ultra high vacuum (UHV) chamber, base pressure of < 10⁻⁹ mbar.
• One magnetron (Tornus, Kurt J Leeker) diameter of 675 mm Ti target
• HIPIMS Power Supply from Advanced Coatings AG Spezio, Italy

Energy-resolved mass spectroscopy at substrate position:

• PSM003, Hiden Analytical Ltd.
• Distance to target - 120 mm, Angle of 58° with respect to target normal.
• Plasma sampled through a ø200 µm grounded orifice, acceptance angle of 5°
• Ion collection gated with a TTL output from power supply.
• Measure a 70 µs window centred at the peak of the 150 µs pulse.

NEW: Quantitative Plasma Analysis of HIPIMS in REACTIVE ATMOSPHERE

Comparison:

• HIPIMS, DC and mid-frequency pulsed DC
• Identical average power = 200 W
• Pulsed DC frequency = 20 kHz
• HIPIMS Discharge:
 • Peak power = 20 kW, Peak current = 50 A
 • Pulse frequency = 100 Hz
 • Discharge voltage: -550 V for inert gas atmosphere
 • -480 V for reactive gas mixture

Results

The time-averaged ion distribution function (IEDF) for ions generated by different methods of sputtering in inert and reactive atmospheres are shown below:

HIPIMS of Ti

<table>
<thead>
<tr>
<th>Inert atmosphere: Ar</th>
<th>Reactive atmosphere: Ar + N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ions were sampled with an energy-mass spectrometer PSM003 (Hiden Analytical Ltd)</td>
<td></td>
</tr>
<tr>
<td>DC & MF pulsed DC Sputtering in Reactive Sputtering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ion</th>
<th>DC</th>
<th>MF pulsed DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar²⁺</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td>Ar³⁺</td>
<td>46</td>
<td>15</td>
</tr>
<tr>
<td>Ti²⁺</td>
<td>78</td>
<td>4</td>
</tr>
<tr>
<td>Ti³⁺</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>N²⁺</td>
<td>82</td>
<td>3</td>
</tr>
<tr>
<td>N³⁺</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

References