Structure-performance relationships of Cu based porous catalysts for selective catalytic reduction (SCR) of NO\textsubscript{x} gases from diesel exhausts

The aim of this project is to obtain a fundamental understanding of Ammonia-Selective Catalytic Reduction (NH\textsubscript{3}-SCR) systems commonly used for emission abatement in heavy duty diesel vehicles. An important aspect of the work involves synthesis of various copper exchanged zeolites using different preparation techniques. The catalysts are pre-characterized using conventional laboratory techniques such as UV-Vis spectroscopy and X-ray diffraction. The materials are further tested for their catalytic activity using an in-house built catalytic rig under plug-flow conditions. The output gasses are analysed online using infra-red spectroscopy and a Hiden Analytical, HPR-20 QIC bench top gas analysis system. Fast and continuous monitoring of the output gases allows for the determination of activity/selectivity profiles of catalysts in question.

Figure 1: Simplified schematic illustration of the in-house built catalytic rig used to mimic exhaust conditions and perform selective catalytic reduction of NO in the presence of NH\textsubscript{3}. All gas lines used were stainless steel grade. All (red colored) lines between the MFCs and analysis instruments (via the reactor) were heated using electrical heat tracing and insulated using quartz wool bands. The electronics, including controls for the MFC units, heating for the gas lines and oven are excluded for clarity. The whole setup can be interfaced into one computer using commercially available lab-view software for automation of the running process. The analytical instruments can work as stand-alone (as in this case) for ease of individual software use, or can be interfaced together with the rest of the setup. Towards the right bottom is an extended illustration of the use of a similar setup at synchrotron beamlines for performing in situ/operando type experiments. Samples can be placed in a capillary (to mimic plug-flow conditions), and connected to a MS at the end for online product analysis. X-ray absorption/X-ray diffraction data can be collected in sequence as a function of reaction conditions.

The catalysts are further analysed using synchrotron light sources under in situ NH\textsubscript{3}-SCR reaction conditions. Catalysts are loaded into quartz capillaries connected to a pre-set gas rig. The output gasses are continuously monitored using mass spectrometry to obtain accurate information on the conversion profiles. The pre-determined positions of cations within zeolites
make it possible to combine both long and short range probing techniques to yield information on the structure and co-ordination of the active sites. To that end, combined X-ray absorption and X-ray diffraction data are collected at different temperatures under SCR conditions which help elucidate the local Cu environment in these catalysts.

In this particular case-study, an attempt was made at tailoring the active sites in Cu-CHA based catalysts. Three different synthetic routes were adapted to achieve this goal: two methods are based on post-synthetic treatment of the zeolite material (via aqueous or vapour phase) and a third one involving the direct synthesis of a Cu-loaded SAPO-34. Product analysis under SCR conditions revealed that whilst the catalyst materials prepared via wet chemical routes show excellent deNOx activity and high selectivity to N2, the one prepared via chemical vapour deposition gave the undesired product N2O in significant quantities. Isolated mononuclear Cu2+ ions in the vicinity of six-membered rings (6mrs, part of the d6r sub-units of CHA) were found to be active sites in both catalyst materials prepared via the wet chemical approaches. In contrast, the catalyst prepared via chemical vapour deposition possesses Cu in two different environments: isolated Cu2+ cations and CuAlO2-type species. Catalytic experiments revealed a strong correlation between the number of isolated mononuclear Cu2+ in or near the plane of the 6m rings and N2 production, whereas the presence of CuAlO2 species appears to promote the formation of undesired N2O.

Project Summary by:
Upakul Deka, Bert M. Weckhuysen and Andrew M. Beale
Inorganic Chemistry and Catalysis,
Debye Institute of Nanomaterials Science,
Universiteitsweg 99,
3584 CG, Utrecht
The Netherlands

Paper Reference:

Hidden Product:
HPR-20 QIC Real time Gas Analyser

[Follow the link to the product catalogue on our website for further information](http://www.hidenanalytical.com/en/products/for-gas-analysis/hpr-20-qic-r-d#customer-stories)