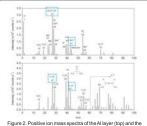

H. Téllez, J.M. Vadillo, J.J. Laserna **Department of Analytical Chemistry** University of Málaga 29071 Spain laserna@uma.es; jmvadillo@uma.es

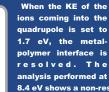
ENERGY-RESOLVED DEPTH PROFILING ANALYSIS OF METAL-POLYMER INTERFACES IN THIN FILM CAPACITORS BY DYNAMIC QUADRUPOLE SIMS

INTRODUCTION

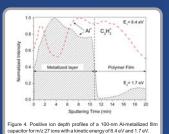
Metallized film capacitors are used in a wide variety of applications such as telecommunications, industrial electronics or automotive, among others. They are composed of a micrometric polymeric film (usually polypropylene) and a nanometric metallized layer. Metallization layers are typically composed of aluminium, with a thickness ranging between 5 and 100 nm. Despite their relatively easy manufacture and performance, some failures might occur during the production, testing or service life of these capacitors. These failures are related to the variations of the chemical composition within the metallization layer, moisture ingress, inhomogeneous metallic thicknesses or demetallization processes.

The combination of dynamic SIMS depth profiling and kinetic energy distribution analysis has allowed to analyze this sort of metallized film capacitors (d-SIMS) and the excellent repeatability and sensibility of the technique allows studying the degradative process in the capacitor films and the accurate location of the metal-polymer interface. These factors affect drastically to the capacitor performance and they will determine the potential failures that could be developed during de capacitor life cycle.



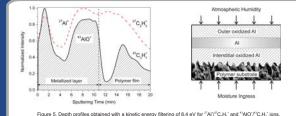

25

ENERGY-RESOLVED ANALYSIS


In Al-metallized polymer films, several isobaric interferences occurred for ions coming from the different layers involved (e.g. ²⁷Al⁺ or ⁴³AlO⁺ from the metallized laver and ²⁷C₂H₂⁺ or ⁴³C₂H₂⁺ from

Based on the different kinetic energy distributions (KEDs) of the isobaric ions (Figure 3) an energy-resolved depth profiling analysis was performed in order to discriminate the metalpolymer interface. The critical importance of the KEDs in depthresolved analysis is well-illustrated in Figure 4.

polypropylene film (bottom)



C.H. 0.8 0.6 0.4 AI* 0.2 0.0 10 5 15 20 Kinetic Energy (eV)

netallic layer; Hatched area: 27AI* in the metallic layer (under electron flooding); Dashed line: ²⁷C₂H₃⁺ in the polymer film (under electron flooding. Inset: Solid line: ²⁷Al⁺ in a pure aluminium tandard; Circles: 43AIO* in the metallic laye

8.4 eV shows a non-resolved depth profile, with contributions of the ²⁷Al⁺ ions from the metallic layer and ²⁷C₂H₂⁺ ions from the polymer film.

The unresolved depth profile corresponds to oxidized AI regions within the metallized layer. This oxidized layers are formed in the presence of oxygen and moisture. The profile obtained for m/z 43 -corresponding to ⁴³AIO⁺ ions from the metal layer- confirms the double-oxidized metallic layer structure (Figure 5).

The metallized film exhibits two oxidized region in direct contact with moisture and oxygen, as shown in the diagram

EXPERIMENTAL CONDITIONS

A 45° electrostatic energy analyzer (EEA) placed prior to the mass filter allows energy-resolved

selection of the secondary ions coming into the

quadrupole. The primary ion was digitally

rastered over an area of 650x790 m², collecting

the signal from the 20% central region in order to

prevent crater edge effects. Under these

conditions, the sample is experiencing an ion

Surface charging effects appear as the polymer film is being exposed by the

primary beam sputtering. In order to minimize those effects, the sample was

grounded to the sample holder, assuring direct contact with the conductive

20% gating area

16

Time variables (min)

0.526 0.056 10.75 0.514 0.047 9.19

2.070 0.033 1.58 2.074 0.031 1.49

Intensity variables (x10⁴ cps)

SD RSD Mean SD

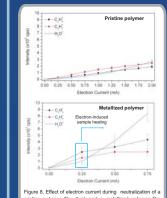
1 1.545 0.065 4.23 1.560 0.064 4.13

Lat 2.240 0.0326 1.46 2.221 0.040 1.80

ly 6.996 0.756 10.81 8.105 1.613 19.90

1.030 8.39

RSD (%)


Mean

12.28

Nearby profiles

SD

Positive secondary ion depth profiling was performed using a 5 keV Ar' primary ion beam with a current of 100 nA. Despite its lower ion yield, Ar⁺ has been used as primary ion keeping unaltered the oxidation state of the surface, in order to monitor possible oxidation processes along the sample thickness. The sample was sputtered at a 45° incidence angle and the emitted secondary ions were analyzed by means of a triple stage quadrupole analyzer, situated at the surface normal.

(bottom)

flooding and the metallization laver improves the sensitivity of the analysis while reducing the Figure 7. Schematic diagram of the sample assembly thermal-induced sample degassing (Figure 8).

dose of 4x10¹³ ions/cm².

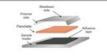


Figure 6. The Hiden SIMS Workstation

ssuring grounded conditions

METHOD REPEATABILITY

In order to apply the analysis method as a quality control tool in the capacitor industry, it must produce reliable and reproducible results, as they will be related to thickness differences between the nanometric metallized layers for each capacitor and/or to demetallization processes.

Two different repeatability evaluations were performed to determine the origin of the analysis variability. Firstly, the method variability was studied by analyzing nearby profiles, where the composition and thickness of the metallic layer is quite homogeneous. Secondly, the variability between far profiles - within an area of 2 cm² - was measured to evaluate the specimen heterogeneity.

Excellent results were obtained for the sputtering times, related to the metal-polymer interface location, with a relative standard deviation (RSD) better than 1.50 % for nearby regions. The comparison between remote profiles indicates that the sample is quite homogeneous, without significant difference in the metallic layer thickness across the film surface.

ACKNOWLEDGEMENTS

This work has been funded by the Ministerio de Ciencia e Innovación through the CTQ2008-02197 project and by EPCOS ELECTRONIC COMPONENTS through the research contract 8.06/5.39.3104. HTL thanks the Ministerio de Ciencia e Innovación her FPU research contract.

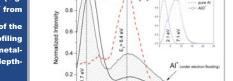


Figure 3. Kinetic Energy Distributions (KEDs) of isobaric species at m/z 27. Solid line: 27AI* in the

REFERENCES Téllez H., Vadillo J.M., Laserna, J.J. Rapid Commun. Mass Spectrom, (2009) 23: 2357-2362.

metallized (Figure 7). Additionally, the sample surface is flooded with low energy electrons (500 eV) to compensate the accumulated charge. The synergistic effect of electron pristine polymer film (top) and a metallized polymer film

τ.

0.5

RSD

(%)

(%)

Far profiles

Mean SD

14.12 2.688

1.5 2.0

Figure 9. Typical ²⁷Al* depth profile in

metallized film canacitors shows two

The parameters for repeatability

assessment are defined in terms of

intensity variables (I1, I2) and

sputtering time variables (t..., t., t.)

(1) uppermost oxidized region

(2) interstitial oxidized regio

Soutterion Time (min)

oxidized regions:

2.5