Energy-Resolved Quadrupole Mass Spectrometry in II^B-VI^A Sputtering Investigations

Daniel M. Meysing^a, Matthew O. Reese^b, James M. Burst^b, Hasitha Mahabaduge^b, Timothy A. Gessert^b, Colin A. Wolden^a, Teresa M. Barnes^b

Sputtering Studies Useful but not Common

- Sputtering is often treated as a black box
 - Control inputs: power, pressure, ambient composition, etc.
- Observe film properties: crystallinity, transmittance, conductivity, etc. • This approach does not consider complex sputtering phenomena
 - Ion/electron energy
 - Particle aggregation/film nucleation

Use mass spectrometry to advance understanding

- Chemistry/composition of sputtered particles
- Critical energetics/potentials

Equipment: QMS Mounted to Sputtering Chamber

- The Sputter-Plasma Diagnostic (SPD) multi-source UHV chamber
- Hiden EQP 500 Quadrupole Mass Spectrometer
 - Mounted via rotating flange with 2-axis motion
 - Line of sight access to sputtering plasma
 - Capable of analyzing neutrals and plasma-generated ions

Colorado School of Mines^a, National Renewable Energy Laboratory^b

Identification of ZnS Mass Spectra

- Do particles sputter atomically or in clusters?
- RF magnetron sputtered ZnS in pure Ar ambient

- Atomic ions more prevalent than clusters
- Ion fluxes: Ar > Zn > S > ZnAr > ZnS

Acknowledgements

This work was supported by the DOE SunShot Program funding of the NREL Core Science and Technologies activities under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

Sputtered II^B-VI^A Materials Used in Thin Film PV

ZnS Ion Energy Distribution (IED) Scans

- Peak position equal to plasma potential¹
- Electron temperature fro
- Experimental design
 - Sputter ZnS in Ar ambient

- Uncertainty in peak position ~0.5 eV
 - Bimodal IED for Ar, single mode for Zn and S

 - Increasing potential with increasing power

• Plot of Intensity vs. arrival energy of plasma-generated ions

$$\sum_{p \to W_{f}} V_{p} - V_{f} = \frac{T_{e}}{2e} \left[1 + \ln \left(\frac{m_{i}}{2\pi m_{e}} \right) \right]$$

• Investigate reproducibility, effects of flight distance, pressure, and power • Baseline conditions: 26 cm displacement, 5 mTorr, 30 W

• Scans show good reproducibility; plasma potential is highly variable

• Near-linear decrease in potential with increasing distance from target • Exponential drop in potential with increasing pressure

Conclusions

• Under baseline conditions, atomic sputtering dominates • Processing conditions greatly affect arrival energy of sputtered ions

Future work

 Investigate oxygen incorporation in CdS and ZnS films • Identify process conditions for atomic vs. cluster sputtering

References

¹K. Ellmer, T. Welzel, Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment, J. Mater. Res. 27 (2012), 765.

