

Cathode catalyst degradation in PEM fuel cells – a differential electrochemical mass spectrometry study

Wei Li, Alan Lane

Dept. of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487 Contact: Alan Lane, <u>alane@eng.ua.edu</u>, (205) 348-1729

THE UNIVERSITY OF

Introduction

Background: Cathode electrocatalyst durability (nanoparticle Pt on carbon black support) is one of the key barriers for PEMFC commercialization.

Two main reasons:

- 1. Carbon support corrosion Two main proposed pathways for the carbon support corrosion:
- C + 2H₂O = CO₂ + 4H⁺ + 4e⁻ , 25 °C, 0.207 V vs. SHE C + H₂O = CO + 2H⁺ + 2e⁻, 25 °C, 0.518 V vs. SHE

2. Pt dissolution

- $\begin{array}{l} {\sf Pt} = {\sf Pt}^{2+} + 2e^- \\ {\sf Pt} + {\sf H}_2{\sf O} = {\sf PtO} + 2{\sf H}^+ + 2e^- \\ {\sf PtO} + 2{\sf H}^+ = {\sf Pt}^{2+} + {\sf H}_2{\sf O} \end{array}$
- Pt oxidation is a pivotal step of the Pt dissolution.

Objective: Study the carbon support corrosion and Pt oxidation/reduction with DEMS spectra.

Experiment

Differential electrochemical mass spectrometry (DEMS):

An on-line mass spectrometer samples gases from the cathode of a 5 cm² single PEMFC, with potential cycling imposed by an electrochemical potentiostat. Humidified H₂ and He gases were fed to anode and cathode, respectively.

5 cm² single PEMFC

Results and discussion

1. Locate the potential to construct DEMS

 $\rm CO_2,~H_2$ and $\rm O_2$ exiting from the cathode during potential cycling (Figure 1: a) were detected by the MS. The mass spectra (Figure 1: b) were turned into the DEMS spectra (Figure 1: c, d) by indentifying the potentials using the $\rm CO_2$ mass signals at 1400 mV as references.

2. Identify which components, Pt or C, cause H₂ and CO₂ signal changes (Figure 2)

- H₂ signal changes are related to the Pt existing in Pt and Pt/C cathodes. The same shape means same mechanisms.
- > CO₂ comes from carbon support.
- Pt catalyzes the CO₂ production.
- Three peaks in the middle represent three different kinds of reactions.
- Pt/C cathode has stronger CO₂ signal at 1400 mV than C cathode.

Results and discussion

Fig. 1: Pt/C cathode DEMS spectra: (a) CV; (b) locate the potentials; (c) DEMS spectra of H_2 and CO_2 ; and (d) DEMS spectra of H_2 and O_2

Results and discussion

3. DEMS spectra interpretation

- 3.1 CO₂ signal (Figure 1: c)
- Maximum I at 100 mV: C reacts with hydrogen peroxide.
- Maximum II (peak II) at 600 mV: CO_{surf} oxidized to CO₂.
- Maximum III (peak III) at 900 mV: carbon surface oxides groups oxidized to CO₂.
- Maximum IV (peak IV) at 1400 mV: C directly oxidized to CO₂.
- Maximum V at 750 mV (cathodic scan): removal of [O] or [OH] from Pt and transfer to carbon surface to help to produce CO₂.

3.2 H₂ signal

Peak at 100 mV: hydrogen desorption from H_{OPD} (Figure 1: c and Figure 3)

Two kinds of H in 100 – 400 mV $\,$

Underpotential deposition H, H_{UPD}, (main part)
 Overpotential deposition H, H_{OPD}, (small part)

Mechanism

- \bullet Only ${\rm H}_{\rm OPD}$ contributes to this peak
- Hydrogen evolution reaction (HER)
 - $Pt + H^+ + e^- = Pt-H_{OPD}$
 - $Pt-H_{OPD} + Pt-H_{OPD} = 2Pt + H_2$
- Or $Pt-H_{OPD} + H^+ + e^- = Pt + H_2$

 The size of H₂ peak is very small compared to the electrochemical surface area from CV.
 HER has positive temperature effect

> H₂ Plateau: (Figure 1: c and Figure 3)

- Starts around 0.9 V (anodic scan), where the Pt begins to be oxidized; ends around 0.8 V (cathodic scan), where the PtOx reduction ends. This matches that in CV. One advantage of DEMS is that it can resolve the currents of Pt oxidation and C oxidation, which cannot in CV.
 PtOx has low hydrogen oxidation catalytic effect
- PtOx has low hydrogen oxidation catalytic effe so as to increase the hydrogen signal.

Results and discussion

3.3 O₂ signal: Plateau (Figure 1: d)

PtOx has lower oxygen (leaking from air) reduction catalytic effect than Pt which results the oxygen signal increase.

- 4. Temperature dependence of carbon corrosion (Figure 4)
- CO₂ signal increase with temperature, which means higher degradation, though better performance at higher temperature.
- Arrhenius plot for CO₂ concentration at 1400 mV shows very good linear, and positive temperature dependence.

Summary and future work

- DEMS is a powerful tool to investigate the carbon support corrosion, Pt oxidation/reduction and their interplay during electrocatalyst degradation in the cathode of PEMFC, by correlating the products and probe gases changes to specific potentials.
- 2.More spectroscopy methods in situ are being considered to complement the DEMS, such as Raman, IR and X-ray absorption fine structure at synchrotron.

Acknowledgements

Financial support from