

Study of low- and hyperthermal energy Ne⁺ scattering from metal surfaces using mass-resolved ionscattering spectrometry

<u>A.Tolstogouzov</u>, S.Daolio, C.Pagura *IPELP CNR, Padova, Italy* C.L. Greenwood *Hiden Analytical, Warrington, England*

Contents :

- Mass-resolved Ion Scattering Spectrometry (MARISS):
 - Basic principles
 - Experimental set-up
- The study of neutralization of low-energy (0.5-1.5 keV) Ne⁺ scattered from the Cu-group metals and Pt:
 - Updated dual-isotope method.
- Hyperthermal (< 200 eV) Ne⁺scattering off Au and Pt:
 - High energy peak (??)
- Summary

Compared with conventional low-energy ion scattering (LEIS), the MARISS technique:

- avoids interference between scattered and sputtered ions;
- suppresses the background related to doubly (or multiply) charged ions;
- provides a useful opportunity to operate with a "mixed" primary-ion beam containing different types of projectiles

Custom-built MARISS-SIMS instrument

General view

Hiden EQS 1000 Mass Energy Analyser

Our MARISS-SIMS set-up measures <u>both</u> energy resolved mass spectra and mass resolved energy distributions

Hiden EQS 1000 Mass Energy Analyser

Experimental Conditions

• EQS 1000 Mass Energy Analyser :

- energy resolution ΔE_a =3.5 eV (FWHM) at E_a =80 eV;
- energy scan of \pm 1100 eV;
- mass resolution $m/\Delta m = (5-10)m$ (FWHM) in the mass range 1-1000 m/z.

3M inert gas ion source:

- energy $E_0 = 0.05 5$ keV with $\Delta E_0 = 2 4$ eV ($I_{em} = 10 15$ mA, $U_i = 70 80$ V, $p = 10^{-5}$ Torr, 99.99% pure Ne, without mass-separation);
- current I_0 =10 1000 nA with $d_0 < 3$ mm and angular divergence $\Delta \gamma$ =0.01-0.05 rad.
- "In-plane" specular reflection geometry:
 - scattering angle $\theta = 120^{\circ}$ with $\Delta \theta = 1^{\circ} (\Delta \Omega = 10^{-4} \text{ sr});$
 - incident angle ψ =60° (on the sample surface).
- Samples studied were pure (99.9 %), polished, polycrystalline Cu, Ag, Au and Pt.

Mass-resolved energy spectra of ²⁰Ne⁺ scattered ions (E₀ = 1 keV, θ = 120°, ψ = 60°)

A close-up view of superposed scans for ²⁰Ne⁺ and ²²Ne⁺ scattered ions ...

... How the scattered peak FWHM depends on the primary-ion energy

The **ion scattering signal S** (the binary elastic collision peak), due to the *i* -component in the surface of the sample, can be written as:

$$S_i = I \cdot P_i^{+} \cdot N_i \cdot \sigma_i \cdot F_i \cdot R \cdot \alpha_i$$

- I is the primary-ion current;
- *P_i* is the ion-survival probability;
- N_i is the surface atom density;
- σ_i is the cross section per solid angle $\Delta \Omega$;
- *F_i* is an experimental factor including the analyser transmission and the detector efficiency;
- **R** is a correction factor for rough surfaces (*R* =1 for a flat surface);
- *α_i* is a steric factor taking into account shielding by neighboring atoms (0≤ *α_i*≤1).

If consider that only the Auger process is dominant, the **ionsurvival probability** *P*⁺ is

$$P^{+} = \exp(-\nu_{c}/\nu)$$

where $1/\nu = 1/\nu_{in} + 1/\nu_{f}$ with ν_{in} and ν_{f} being the normal components of velocities (Hagstrum) or total velocities (Godfrey-Woodruff) of the ion on the incoming and outgoing (final) parts of the trajectory respectively, and ν_{c} is the <u>characteristic velocity</u> (neutralization constant) for the ion-target combination obtained by integrating the Auger transition rate over the length of the projectile trajectory.

The term 1/v represents the time that the particle spends near the surface, with **larger** values of v_c leading to a **smaller ion fraction** of the scattered particles.

Assuming that *P*⁺ is a function of the reciprocal (inverse) velocities, it has become a custom to plot the natural logarithm of the normalized intensity *InS* versus 1/v by using the following experimental approaches:

- variation of the scattering angle at fixed primary energy or variation of the primary energy at a fixed scattering angle (Brongersma et al.);
- angular distribution measurements of ions scattered into the plane normal to that containing the incident beam and normal to the surface of the target with a fixed primary energy and a movable analyser (O'Connor, MacDonald et al.);
- <u>Dual-Isotope Surface Composition technique</u> (Brongersma et al, Surf.Sci. 227 (1990) 361) or multi-isotope investigation (Wittmaack, Surf. Sci. 345 (1996) 110)

Dual-Isotope Surface Composition (DISC) technique is based on the use of the two (or more) isotopes of the primary ions as projectiles

- For a given incident energy E₀, the lighter isotope ion has the higher velocity before and after collision;
- The neutralization constant v_c remains the same for all isotopes;
- The apparatus factors and sample characteristics are practically unaltered during dual-isotope scattering ion measurements.

Our updated Dual-Isotope method involves the <u>simultaneous</u> use of ²⁰Ne⁺ and ²²Ne⁺ as projectiles with additional mass-separation of scattered ions

By using ²⁰Ne⁺ and ²²Ne⁺ as primary ions, one can finds that

$$n(\frac{{}^{20}S}{{}^{22}S} \cdot \frac{{}^{22}I}{{}^{20}I} \cdot \frac{{}^{22}\sigma}{{}^{20}\sigma}) = v_c \cdot (\frac{1}{{}^{22}v} - \frac{1}{{}^{20}v})$$

where the upper index of all factors indicates the mass of Ne⁺ isotope ions. It is important to note that:

• no precise primary-ion current measurements are needed, because the relative primary current $({}^{22}I/{}^{20}I)$ is equal to the natural neon isotopes ratio k = 0.102;

• the differential cross section is practically identical: for ZBL potential $(2^{2}\sigma/2^{0}\sigma) = 1.005 - 1.01$ ($E_{0} = 0.5 - 1.5$ keV and $\theta = 120^{\circ}$).

$$\ln(\frac{{}^{20}S}{{}^{22}S} \cdot 0.102) = v_c \cdot (\frac{1}{{}^{22}\nu} - \frac{1}{{}^{20}\nu})$$

Plots of the natural logarithm of the peak intensity ratio versus the difference in reciprocal velocities

$$\ln(\frac{{}^{20}S}{{}^{22}S} \cdot 0.102) \approx A + v_c \cdot (\frac{1}{{}^{22}v} - \frac{1}{{}^{20}v})$$

	<i>v_c,</i> ×10⁵ m/s	A	
Cu	2.05±0.12	-0.475±0.033	
Ag	2.15±0.12	-0.332±0.023	
Pt	1.67±0.10	-0.173±0.019	
Au	1.90±0.20	-0.191±0.031	

Results of linear regression fitting of the experimental data (*for comparison*, $v_c=1.36\times10^5$ m/s for Ne⁺-to-Au by Buck et al.)

$P^{+} = (b/v^{n}) \cdot \exp(-v_{c}/v)$

Projectile parameters estimated for the "critical points"

Sample	E _{0,} keV	r _{0,} Å	²² <i>v,</i> ×10 ⁴ m/s	²⁰ <i>v,</i> ×10 ⁴ m/s	n
Cu	1.3	0.37	3.344	3.632	5.7
Ag	1.5	0.41	4.129	4.401	5.2
Pt [*]	2.1	0.43	5.323	5.627	3.1
Au [*]	2.1	0.43	5.322	5.629	3.4

where **b** is the normalization factor and the index of the power $n = A/\ln(\frac{22}{20})$

Ion-survival probability *P*⁺vs the reciprocal velocity

Conclusions

- An updated dual-isotope method based on MARISS technique with two isotopes of Ne⁺ as primary-ion beam was developed.
- The data for characteristic velocity v_c for Cu,Ag, Au and Pt were estimated.
- An empirical formula for P+ (1/v), containing an additional term dependent on the reciprocal velocity, was suggested without monotone dependence of the ion-survival probability on the reciprocal velocity.
- <u>The proposed expression is open to question</u> and call for an adequate physical model based on ab-initio quantum calculation.

Hyperthermal energy Ne⁺ scattering from Au

Hyperthermal energy Ne⁺ scattering from Pt

Surface topography measured after experiments by Tencor Profiler P-10 (a total ion dose was about 10¹⁶ cm⁻²)

Au sample (*rms roughness is about 210 ± 130 nm*)

Pt sample (*rms roughness is about 92 ± 8.5 nm*)

SIMS-MARISS depth profiles of cobalt oxide film (about 25 nm) on indium tin oxide (ITO) substrate

Primary ions - Ne⁺+He⁺, 1 keV / 1 μ A, 2×2 mm², 20% el. gating, θ =120°. Peaks of interest: SIMS -¹¹⁵In⁺, ⁵⁹Co⁺; MARISS - ²⁰Ne⁺-to-In (596 eV), ²⁰Ne⁺-to-Co (352 eV), ⁴He⁺-to-O (474 eV)

"Significant items in a given group normally constitute a relatively small part of the total items"

Vilfredo Pareto, an Italian sociologist and economist