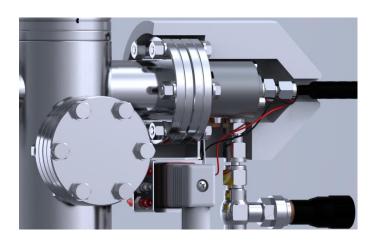


Hiden QIC MultiStream

Multi-component and multi-stream gas analysis

Introduction

- This presentation provides an overview of gas analysis systems for multi-component, multi-stream off-gas analysis.
- Multi-component, multi-stream off-gas analysis by mass spectrometry provides real-time trend analysis of the gases and vapour species that are important to product yield, O2, CO2, H2, CH4 for example, and provides vital data for real time process monitoring.
- The mass spectrometer is user programmable to analyse a broad range of gas and vapour species and covers most species of interest in a variety of different environments.

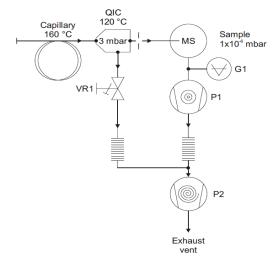

Hiden QIC Series Gas Analysis Systems

- The QIC series gas analysers are mass spectrometers configured for realtime gas analysis, catalytic reactor exhaust gases for example.
- The QIC systems provide for multiple species real-time trend analysis providing quantitative gas analysis.
- The QIC systems include an inert silica capillary with fast response to both gases and vapours.

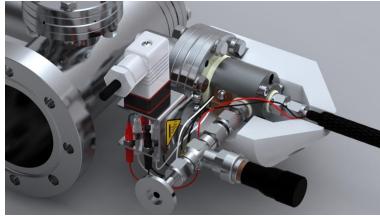
QIC Inlet Technology

Quartz and Platinum Wetted Surfaces No memory effects

> Heated Capillary → No condensation effects


Flow Matched — Optimum response / recovery

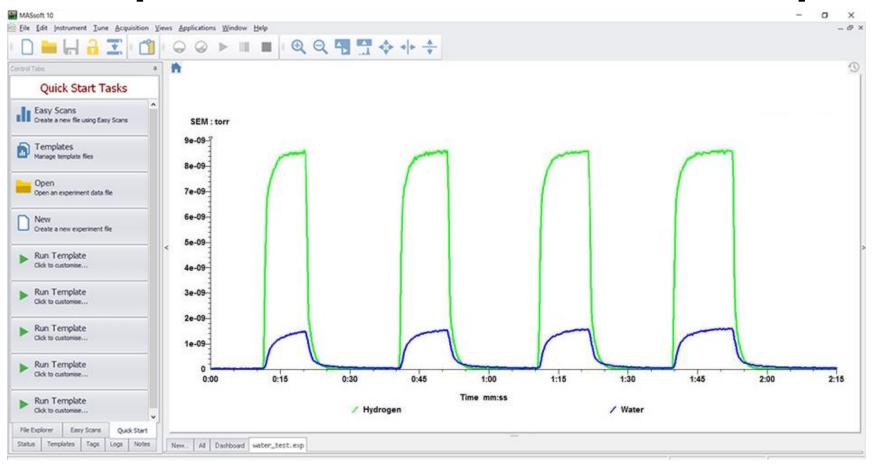

Minimal Internal Volume —— PPB detection


These features provide excellent analyser performance for multi-component, multi-stream off-gas analysis.

QIC Inlet- MS Interface Overview

Key

G1 Penning gauge


VR1 QIC Inlet bypass control valve

P1 60 l/s turbo drag pump

P2 Backing and bypass Scroll pump MS UHV Housing (Mass spectrometer chamber)

Fast Response to Permanent Gases / Vapours

Data shows the response of the QIC inlet to gas and vapour during switching between a dry He stream and a wet H_2 and Ar flow. For clarity, only the H_2 and H_2 O data is shown in the graph.

QIC MultiStream

Modular multi-stream off-gas analyser, bench-top or cart configured for analysis of:

8, 20, 40 or 80 sample streams for high flow ~ up to 12 l/min sample flow

Or

20, 40 or 80 sample streams for low flow small volume reactors ~ 4 ml/min sample flow

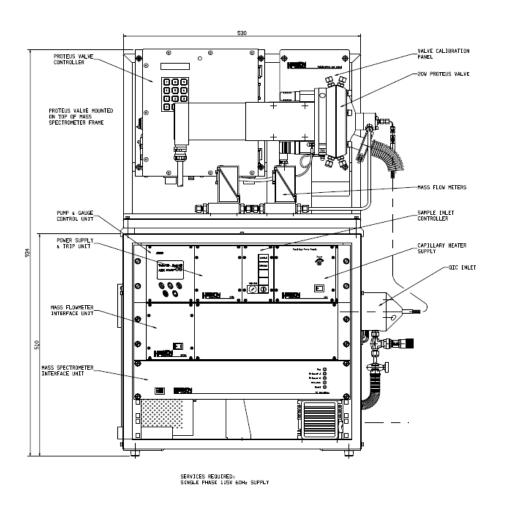
For higher flow rates, sample flow is connected to the QIC MultiStream via a T piece.

QIC MultiStream-C bench-top system

Modular configuration:

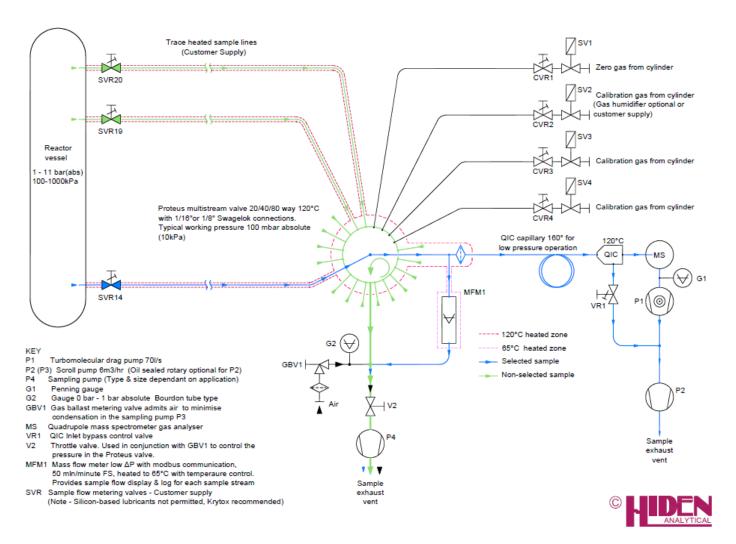
Small footprint instrument: 535mm deep X 530mm wide

20 stream version shown with dual mass flow meters for accurate selected flow measurement in the flow range to 12 l/min.

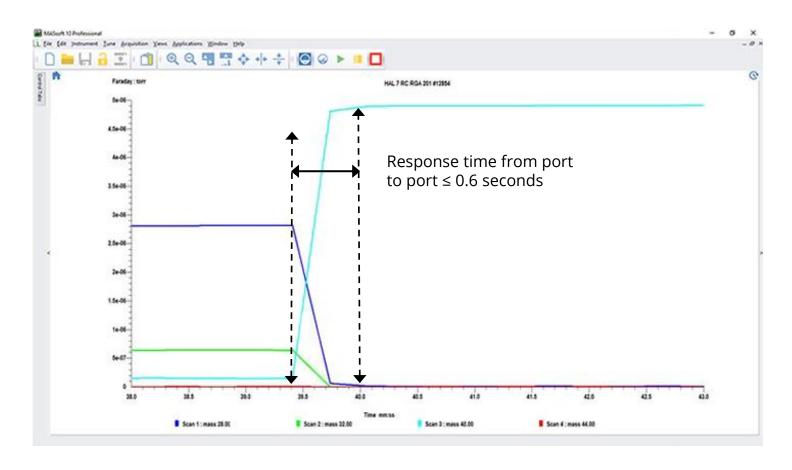


QIC MultiStream-C bench-top system

Small footprint instrument: 535mm deep X 530mm wide


Top mounted Proteus Valve 20 or 40 stream versions.

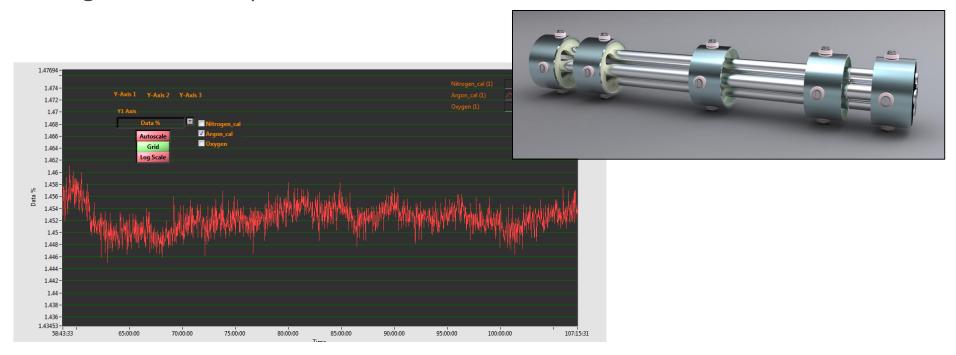
20 stream version shown with dual mass flow meters for accurate selected flow measurement in the flow range to 12 l/min.



Schematic of QIC MultiStream for thermal-hydraulic testing

QIC MultiStream switching time between sample streams in ≤ 0.6 seconds

Hiden Proteus MultiStream Valve					
Туре	Gas Selector valve - relies on novel face sealing technology to provide effective sealing with long life.				
Max Operating Temperature	120°C				
Minimum Sample Flow	Not applicable - Determined by analyser (no sample lost)				
'Crosstalk' from other samples	Zero				
Number of operations before maintenance	>6 x 10 ⁶				
Memory (carry over) From previous sample	Class leading low memory due to minimised internal switching volume and low sample wetted surface area. The face seal is isolated from the sample by a secondary internal seal.				
Number of ports	20, 40, 80				
Actuation	Direct drive, high torque micro-stepping motor with IP65 protected incremental rotary encoder providing home z-position and closed loop motion control. Full motion management including intelligent acceleration/deceleration, position maintenance, bi-directional drive and position error annunciation.				


Positioning accuracy	+/- 0.09°
Full brown-out sensing and protection	Yes
Communication (valve port position select)	Binary, BCD RS232C
Available as separate product	Yes

Triple Filter Quadrupole Mass Spectrometer

- Precision machined ceramic supports
- Independently driven RF pre and post filters
- Long term stable operation

- Oxygen, Nitrogen and Argon measured over 110 hours
- Data shows stability of the Argon signal for an extended period

QGA Software Quantitative gas analysis software

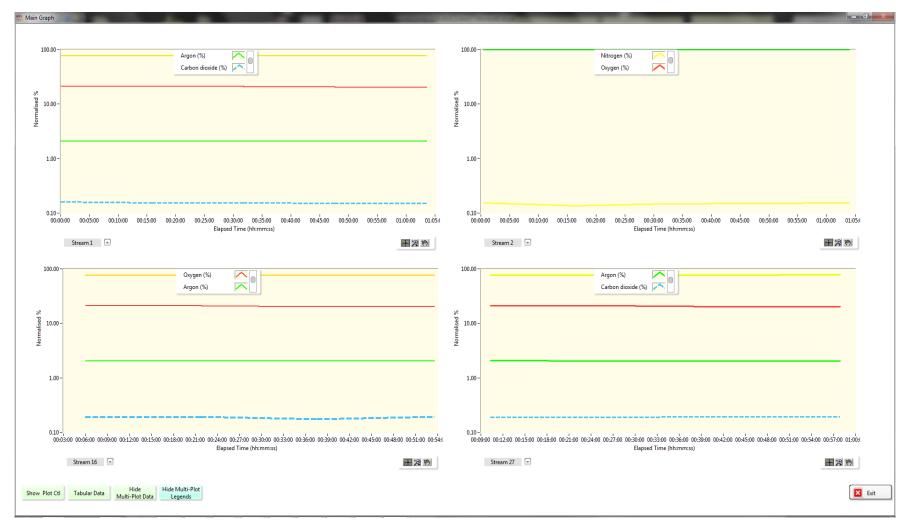
Template operation from pre defined analysis set up for up to 32 gases and vapours.

Automatic data acquisition.

Data export OPC and/or direct to Excel.

Multi-stream capability for up to 80 gas sample streams.

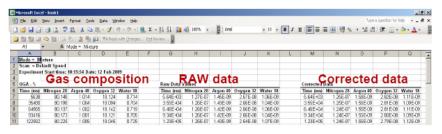
Multiple stream sequence set up - 80 stream example

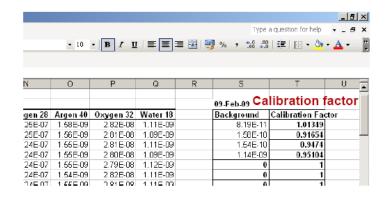


Click to add or subtract a stream from the analysis sequence

Different sampling points can be added or subtracted from the stream sequence at any time during the analysis with a simple click on the stream LED.

Multi-stream gas analysis - The real-time trend analysis of up to 4 selected streams can be viewed in real-time and in review

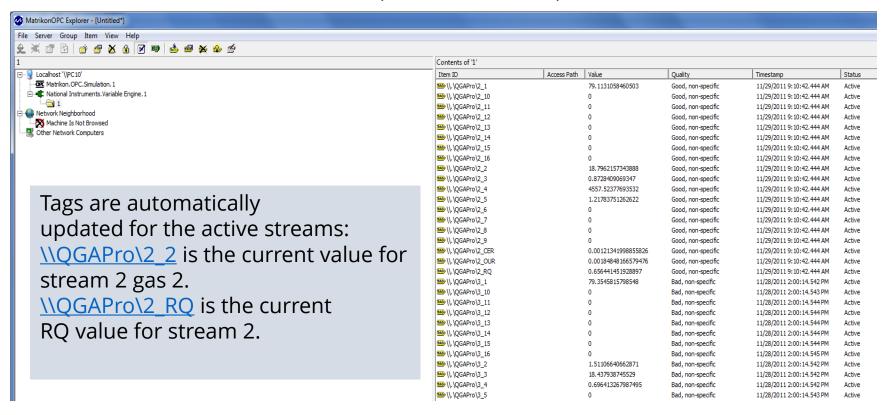




Data Export

- Data export to MS Excel.
- New workbook for each data file.
- Quantitative data, raw data values and corrected data values are exported.
- Calibration factors and background correction values are recorded.
- The workbook contains a worksheet for each gas stream.

Data for up to 80 gas sample streams


		00.1001	1.002	10.002	0.1001		
38	903940	80.193	1.009	18.102	0.695		
39	932948	80.203	1.016	18.076	0.705		
40	961778	80.065	1.018	18.221	0.696		
41	990701	80.181	1.015	18.091	0.714		
42	1019570	80.185	1.031	18.077	0.707		
43	1048680	80.149	1.023	18.125	0.704		
44	1077430	80.12	1.023	18.155	0.702		
45	1106301	80.076	1.013	18.218	0.693		
46	1135051	80.207	0.996	18.099	0.698		
47	1163923	80.185	1.018	18.089	0.708		
48	1192796	80.148	0.997	18.172	0.684		
49	1271902	80 195	1 011	18.1	n 694		
Reac	dy						

OPC - Data Output

The screen shot is from an OPC data viewer showing data tags for each stream and for each gas channel.

OPC data can be selected as raw, corrected or %, PPM values

Real time data export, system control and I/O for process control

Three options for output of real time data

- OPC for process control providing real time data tags from QGA Pro software.
- RS232 streamed data in ASCII format from the mass spectrometer interface unit.
- Socket interface for windows client compatible applications with MASsoft Pro software.

System control and outputs

- 5 I/O for TTL signal control for automatic operation- start /stop for example.
- Up to 16 channel signal output options as 0 10V analogue outputs.

System data logging

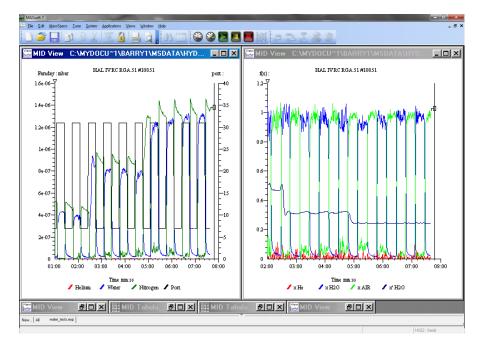
• Three RS485 inputs provide for up to three device type protocols for reading data from external devices, temperature for example. Synchronously logged and displayed with the mass spectrometer data.

QIC MultiStream gas analyser for sampling flow rates for high to low flow conditions

- Small diameter sample tubing is used to connect the QIC MultiStream to the sampling point.
- Sample gas flow through the sample tubing is induced by creating a pressure gradient along the tube.
- The sample flow may be achieved by a positive pressure at the sampling point & venting the sample flow to ambient pressure after analysis.
- Alternatively, a sampling pump may be connected to the analyser exhaust.
- This type of system will typically accept individual sample flow rates from several litres/minute to 0.1 litres/minute. Sample transit times become unacceptably long (several minutes) below 0.02 litres/minute.
- Applications using lower sampling flow rates use the low flow configuration of the QIC MultiStream optimized for flow rate < 4ml/minute.

QIC MultiStream gas analyser for very low flow conditions

- The QIC MultiStream low flow system utilizes the unique capability of the Proteus multi-stream selector valve to operate under very low pressure (vacuum) conditions.
- This system is optimized for fast response with very low sample flow rates. This is achieved with small-bore capillary tubing. The sampling lines then become the 1st stage of the inlet pressure reduction system. The exhaust of the Proteus valve is connected to the dry scroll pump to provide a vacuum of a few mbars absolute within the valve.
- Atmospheric pressure sample gas enters the capillary sample tubing at the sampling point at 1.8 metres/s (typical for 0.2mm ID x 2.0 metre sampling capillary) then accelerates rapidly along the tubing due to the progressive expansion of the sample.
- For example, 4 ml/minute atmospheric flow expands to $4 \times 200 = 800 \text{ ml/min}$ (0.8) litres/minute).
- This increase in sample volume flow rate provides rapid sample transit along the sampling capillary & the fast switching response, switching time between sample streams is < 0.6 seconds.


Application Example - Nuclear Reactor Safety Research

The QIC MultiStream was commissioned to investigate the function and reliability of passive condensors in the presence of "non-condensable" gases e.g. N₂, which can affect the efficiency of the Passive Protection Systems.

The QIC MultiStream showed a good response to the gradual introduction of steam. Switching from '100'% → 0% steam in 20 / 20s cycle showed

reproducible response.

The system was also required to display insensitivity to pressure fluctuations. This was confirmed by (i) increasing source pressure which showed a partial pressures increase but an unchanged composition ratio and (ii) switches between mixed gas/ vapour / gas only streams which showed a response in seconds with <u>no</u> memory effects.

Summary – QIC MultiStream for Off-gas analysis

QIC MultiStream – cart or compact bench top configuration

Off-gas analysis for 8, 20, 40, or 80 streams

Analysis of gases and vapours

Triple filter quadrupole mass spectrometer

Optional data displays of MS and derived functions e.g. Vapour Pressure from Dew Point temperature T_{dp}

Data output though OPC shared variable engine

Lifetime application and service support

QIC MultiStream mobile cart

QIC MultiStream-C bench-top

