

Hiden Analytical Ltd. 420 Europa Boulevard Warrington WA5 7UN England

- **T** +44 [0] 1925 445 225
- F +44 [0] 1925 416 518
- E info@hiden.co.uk
- w www.HidenAnalytical.com

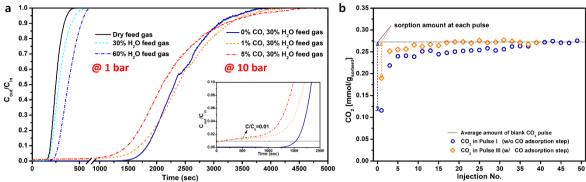
Dynamic CO₂ sorption on MgO-based sorbent in the presence of CO and H₂O at elevated pressures

MgO-based sorbents have received a great attention as a sorbent for pre-combustion CO_2 capture. Still, few studies have been conducted on how the sorption mechanism varies in the presence of gases other than CO_2 . Here, we report on the dynamic CO_2 sorption behavior of MgO-based sorbents under simulated practical conditions, including H_2O and CO.

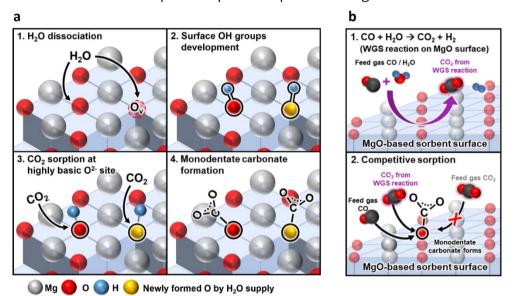
The CO_2 sorption behavior of the salt-promoted MgCeO_x prepared by a sol-gel combustion-assisted method was examined in the fixed bed reactor by monitoring the breakthrough of effluent gases (CO₂, CO, Ar) with an on-line mass spectrometer (**Hiden HPR 20**). The breakthrough experiments under various practical relevant conditions indicated that the feed gas composition was a dominant factor in determining the dynamic CO_2 sorption behavior (Figure 1), whereas the breakthrough profiles was not significantly influenced by the sorption temperature conditions. When H₂O was included up to 60% in the feed gas (wet condition), the breakthrough time increased significantly from 159 sec to 213 sec compared to the dry condition (Figure 1(a)). Even under the wet condition, the presence of CO in the feed condition resulted in the immediate breakthrough of a trace amount of CO_2 and decreased the CO_2 sorption capacity of the sorbents (Figure 1(a)). Based on the understanding of dynamic CO_2 sorption behavior from the breakthrough experiment, the underlying sorption mechanisms influenced by H₂O and CO molecules were studied via *in situ* DRIFTS analyses under various CO_2 mixtures.

In *in situ* DRIFTS (Diffuse Reflectance Infrared Fourier-Transform Spectroscopy) analyses where the change of OH groups generated by the presence of H_2O was observed, the peak intensities of multi-coordinated and mono-coordinated OH groups in the wet conditions increased by 2.32 and 1.72 times, respectively, compared with those in the dry conditions. These results indicated that the surface OH groups were developed by the dissociation of H_2O at the oxygen vacancies on the $MgCeO_x$ surface, which were subsequently occupied by the OH groups (Figure 2(a)). In particular, compared with other surface species, the peak intensities of the adsorbed OH groups and monodentate carbonate in wet conditions increased at remarkably high rates. The results suggested that H_2O may function as a crucial component in the initial rapid sorption of CO_2 , allowing CO_2 to be bound in the form of monodentate carbonate.

To understand the immediate breakthrough of CO_2 in the presence of CO_3 , the CO_2 pulse titration experiments were conducted by exposing the MgCeO_x sorbent to the dilute CO_3 flow, purging


with the inert gas, and analyzing generated gases with the mass spectrometer during the consecutive CO_2 pulses. The result revealed that the interrupted CO_2 sorption in the coexistence of CO and H_2O was caused by competitive sorption (Figure 1(b) and Figure 2(b)). First, the WGS (Water-Gas Shift) reaction was catalyzed by $MgCeO_x$ to generate CO_2 . Then, CO and the WGS-induced CO_2 competitively occupied the sorption sites where CO_2 in the feed gas could have been sorbed, thereby hindering initial rapid CO_2 sorption.

This study showed the approach to understand the dynamic sorption behavior by coupling the result from the breakthrough experiment and the *in situ* DRIFTS and the obtained result can give a guide to overcome the obstacles for the ultimate application of MgO-based sorbents.



Hiden HPR-20 Mass Spectrometer

Figure 1. (a) CO_2 breakthrough experiments at different pressures under feed mixtures flow including H_2O and/or CO and (b) CO_2 pulse titration experiments with (Pulse III) and without (Pulse I) CO adsorption step for salt-promoted MgCeO_x.

Figure 2. Schematics of CO₂ sorption mechanism (a) in wet CO₂ condition and (b) in wet CO₂/CO condition on the surface of MgO-based sorbent.

Project summary by:

Gina Bang^a, Seongmin Jin^{a. b} and Chang-Ha Lee^a

a Department of Chemical and Biomolecular Engineering,

Yonsei University, Seoul, 03722, Republic of Korea

^b Institute of Chemical Engineering,

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Paper Reference:

Gina Bang, Kyung-Min Kim, Seongmin Jin, Chang-Ha Lee (2022) "Dynamic CO₂ sorption on MgO-based sorbent in the presence of CO and H₂O at elevated pressures" *Chemical Engineering Journal*, 433, 134607, DOI: https://doi.org/10.1016/j.cej.2022.134607

Hiden Product:

HPR-20