

Hiden Analytical Ltd. 420 Europa Boulevard Warrington WA5 7UN England +44 [0] 1925 445 225
info@hiden.co.uk
www.HidenAnalytical.com

Applicability of LaNiO₃-derived catalysts as dual function materials for CO₂ capture and in-situ conversion to methane

Integrated cyclic CO₂ capture and in-situ hydrogenation to CH₄ on dual function materials (DFMs) has attracted increasing interest in recent years, since it eliminates the costly CO₂ purification step that is required for CO₂ methanation on the continuous operation. The conventional DFMs are composed of a CO₂ storage material (such as, Ca, Na, Mg or K) and a metal (mainly Ni or Ru) that assists its methanation. However, Ni presents lower activity and stability than Ru, whereas its high cost is the main limitation of the latter. Considering this background, the aim of this work is to evaluate the applicability of supported LaNiO₃ perovskites, as precursors of efficient dual function materials for CO₂ adsorption and in-situ hydrogenation to methane.

Four DFMs, obtained after the controlled reduction of different perovskite-based precursor (30% LaNiO₃/CeO₂, 30% LaNiO₃/Al₂O₃, 30% LaNiO₃/La-Al₂O₃ and LaNiO₃), were prepared by combining citric acid and impregnation methods. The physico-chemical properties of the DFMs were determined by N₂ adsorption-desorption, XRD analysis, STEM-EDX images as well as H₂-TPR, H₂-TPD and CO₂-TPD experiments. All temperature programmed experiments were monitored with a **Hiden Analytical HPR-20 EGA mass spectrometer**. CO₂ adsorption and hydrogenation cycles were carried out in a vertical stainless steel tubular reactor inside a 3-zone tube furnace. CO₂, CH₄, CO and H₂O concentrations were continuously monitored by FTIR during the CO₂ storage/capture period (10% CO₂/Ar, 1 min) followed by its hydrogenation/methanation (10% H₂/Ar, 2 min), with an intermediate Ar purge. The experiments were carried out with a flow rate of 1200 ml min⁻¹ on the pre-reduced sample (550 or 800°C, 2h), in the 280-520°C temperature range.

The Hiden Analytical HPR-20 EGA Mass Spectrometer in the Laboratory

Results of XRD analysis, STEM-EDX images, H₂-TPD, H₂-TPR and CO₂-TPD experiments reveal that the DFM obtained after reduction of 30% LaNiO₃/CeO₂ formulation shows the smallest Ni⁰ particle size (7 nm) and the highest medium-strong basic sites concentration. As a result, this DFM widens the operational window with respect to those obtained from 30% LaNiO₃/Al₂O₃, 30% Ref: AP-HPR-20-202319 Product: HPR-20 EGA

LaNiO₃/La-Al₂O₃ and LaNiO₃ formulation. Specifically, the resulting DFM maintains the methane production ranging between 80 and 103 µmol g⁻¹ and the selectivity towards methane above 90% in the range of 280-520 °C. Based on characterization results, the best catalytic behaviour is related to a better contact between the different nature basic sites and the homogenously distributed Ni⁰ sites, which favours a fast spill-over of dissociated H to nearby CO₂ adsorption sites. Note that these properties are significantly promoted with respect to conventional DFMs. The applicability of this DFM is further evidenced by a highly stable CH₄ production during long-term experiments and a promoted Ni⁰/NiO reversibility in the absence/presence of O₂ during the CO₂ adsorption period, which allows a fast and complete recovery of CH₄ production in absence of O₂. These aspects favour a versatile application of the 30% LaNiO₃/CeO₂-based DFM formulation to convert CO₂ outlet streams from combustion flue gases of different nature.

Project summary by:

J.A. Onrubia-Calvo, A. Bermejo-López, S. Pérez-Vázquez, B. Pereda-Ayo, J.R. González-Velasco Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country

tecnologías químicas para la sostenibilidad ambiental euskal herriko university of the unibertsitatea

UPV/EHU, Campus de Leioa, Barrio Sarriena, ES-48940 Leioa, Bizkaia, Spain

Paper Reference:

"Applicability of LaNiO₃-derived catalysts as dual function materials for CO₂ capture and in-situ conversion to methane" *Fuel* 320 (2022) 123842. <u>https://doi.org/10.1016/j.fuel.2022.123842</u>

Hiden Product: HPR-20 EGA